MP simulations in ILC and 650 MHz cavities

S. Kazakov

02/09/2011

Goals:

- •Find proper tools /approach for MP simulation
- •To understand possibility of MP in 650 MHz cavities

Code for MP simulation we have in the lab:

- Analyst: 3D, mega-particles, simple model of emission*
- Multipac: 2D, simple model of emission*
- •Fishpac: 2D, simple model of emission*
- •CST: 3D, PIC, "real" particles, Fuman model of emission**

^{*}Take into account only 'true' secondary emission

^{**} Take into account 'true', 'elastic' and 'rediffused' secondary particles

Initial situation:

```
Analyst
Multipac - no multipactor in FNAL/JLab/ILC cavities.
Fishpac
```

CST (preliminary runs) – multipactor in all cavities.

Experiment: soft multipactor in ILC cavities ~ 20-25 MV/m acc. gradient

Where is truth?

Is majority right?

CST – is most sophisticated code.

But there are some difficulties in simulations related to small sizes of multipactor area:

Typical sizes of MP areas (all sizes are in mm):

Cell size of mesh should be ~0.1 mm for adequate simulations.

We can not simulate whole cavity. It requires ~1.E+9 cells

Procedure of simulation:

- 1. Calculation of field by quasi- 2D code HFSS (1° sector), 2-nd order tetrahedron mesh.
- 2. Extracting 2D fields with 0.1mm (or less) step.
- 3. Creating 3D fields from 2D with step 0.1mm (or less) in volume of interest.
- 4. Import 3D fields into CST
- 5. Simulation particles motion by CST with mesh ~0.1 x 0.2 mm

Typical numbers of mesh cells of CST simulation is ~ 2E+6
Typical starting number of particles ~1-3E+4.

Typical time of simulation ~1-2 hour per variant.

Main limitation – time of calculation.

Typical mesh for '2D'-field calculation

Typical CST mesh for motion simulation:

Convergence with respect to mesh sell sizes

MP in 650MHz, b =0.61 cavity
Convergence with respect to mesh cell sizes

MP in ILC cavity,
Convergence with respect to mesh sell sizes

Typical behavior of particles number vs. time

Model of material

Three types of scattering particles are taken into account in CST code:

Secondary Electron Emission

Secondary emission

[A primary particle hitting a metal surface can cause the emission of so called secondary particles]:

- Depends on the kinetic energy and material properties
- Self consistent model according to Furman
- Statistical behaviour

ST - COMPLITER SIMULATION TECHNOLOGY L www.cst.com | L Nov-10

Dates from Genfa Wu were used for simulation:

Max. SEY = 1.3, E_max = 180V, Cross 1 = 900V

Two options were used to simulate niobium:

Option 1:

Base is copper. Elastic and rediffused are similar to copper ones.

True secondary was modified.
Total curve matches GW curve.

Option 2:

No elastic No reduffused

True secondary curve (and total curve) matches GW curve.

Simulations of MP in ILC cavity.

Ideal shape: Real shape:

Simulated volumes and mesh

Mesh: min 0.093mm, max. 0.19 mm, N = 2.16E+6

Real shape:

Particles after 8 ns:

Time / ns

MP in ILC cavity

Experiment: soft MP exists in region ~20-25 MV/m

MP in ILC cavity Dependance on matrial models

Conclusions:

- 1. Elastic and reduffused electrons change drastically situation and have to be included into the model. But we have no this kind information for niobium.
- 2. Other codes can not see MP because they do not include elastic and rediffused electrons.

Simulation of 650MHz b=0.61, simulated shapes:

MP in 650MHz, b=0.61 cavities

Mesh: min. 0.124mm, max. 0.251mm

Convexity does not change parameters of cavities: max. fields, Q, R/Q, etc.

But it suppresses MP significantly

New 2D "Analist" finally found MP after including elastic and rediffused electrons in the model

Analyst Simulation

MP in FNAL 650MHz, b=09 cavity

Suggestion:

To conceder a possibility to make cavity with convexity.

Conclusion:

- 1. It seems we can trust CST:
 - a) we found mesh size which provide convergence
 - b) CST and Analyst give similar results
 - c) CST predict MP in ILC in region when it is observed experimentally
- 2. MP is possible in 650 MHz cavities
- 3. Small convexity suppress MP.

Backup

MP in 650MHz, B=09 cavity.

Mesh: min. 0.125mm, max. 0.251mm